Prime numbers are positive integers greater than 1 that lack divisors other than 1 and themselves. In simpler terms, a prime number is a natural number incapable of being generated by multiplying two smaller natural numbers. Notable examples of prime numbers include 2, 3, 5, 7, 11, 13, and so forth. You can refer to the comprehensive list of prime numbers ranging from 1 to 5000.
In a more formal definition, a positive integer p is classified as prime if and only if its exclusive positive divisors are 1 and p itself. Conversely, if a positive integer n possesses divisors beyond 1 and itself, it is termed a composite number. For instance, 2 and 3 qualify as prime numbers since their sole divisors are 1 and 2, and 1 and 3, respectively. On the contrary, 4 is not a prime number due to having divisors 1, 2, and 4.
Prime numbers hold a pivotal role in number theory and find applications in diverse fields such as cryptography, computer science, and mathematics. The intricate distribution of prime numbers has been a captivating subject for mathematicians throughout history.
List of Prime Numbers (1-5000)
S.No | Prime Number |
---|---|
1 | 2 |
2 | 3 |
3 | 5 |
4 | 7 |
5 | 11 |
6 | 13 |
7 | 17 |
8 | 19 |
9 | 23 |
10 | 29 |
11 | 31 |
12 | 37 |
13 | 41 |
14 | 43 |
15 | 47 |
16 | 53 |
17 | 59 |
18 | 61 |
19 | 67 |
20 | 71 |
21 | 73 |
22 | 79 |
23 | 83 |
24 | 89 |
25 | 97 |
26 | 101 |
27 | 103 |
28 | 107 |
29 | 109 |
30 | 113 |
31 | 127 |
32 | 131 |
33 | 137 |
34 | 139 |
35 | 149 |
36 | 151 |
37 | 157 |
38 | 163 |
39 | 167 |
40 | 173 |
41 | 179 |
42 | 181 |
43 | 191 |
44 | 193 |
45 | 197 |
46 | 199 |
47 | 211 |
48 | 223 |
49 | 227 |
50 | 229 |
51 | 233 |
52 | 239 |
53 | 241 |
54 | 251 |
55 | 257 |
56 | 263 |
57 | 269 |
58 | 271 |
59 | 277 |
60 | 281 |
61 | 283 |
62 | 293 |
63 | 307 |
64 | 311 |
65 | 313 |
66 | 317 |
67 | 331 |
68 | 337 |
69 | 347 |
70 | 349 |
71 | 353 |
72 | 359 |
73 | 367 |
74 | 373 |
75 | 379 |
76 | 383 |
77 | 389 |
78 | 397 |
79 | 401 |
80 | 409 |
81 | 419 |
82 | 421 |
83 | 431 |
84 | 433 |
85 | 439 |
86 | 443 |
87 | 449 |
88 | 457 |
89 | 461 |
90 | 463 |
91 | 467 |
92 | 479 |
93 | 487 |
94 | 491 |
95 | 499 |
96 | 503 |
97 | 509 |
98 | 521 |
99 | 523 |
100 | 541 |
101 | 547 |
102 | 557 |
103 | 563 |
104 | 569 |
105 | 571 |
106 | 577 |
107 | 587 |
108 | 593 |
109 | 599 |
110 | 601 |
111 | 607 |
112 | 613 |
113 | 617 |
114 | 619 |
115 | 631 |
116 | 641 |
117 | 643 |
118 | 647 |
119 | 653 |
120 | 659 |
121 | 661 |
122 | 673 |
123 | 677 |
124 | 683 |
125 | 691 |
126 | 701 |
127 | 709 |
128 | 719 |
129 | 727 |
130 | 733 |
131 | 739 |
132 | 743 |
133 | 751 |
134 | 757 |
135 | 761 |
136 | 769 |
137 | 773 |
138 | 787 |
139 | 797 |
140 | 809 |
141 | 811 |
142 | 821 |
143 | 823 |
144 | 827 |
145 | 829 |
146 | 839 |
147 | 853 |
148 | 857 |
149 | 859 |
150 | 863 |
151 | 877 |
152 | 881 |
153 | 883 |
154 | 887 |
155 | 907 |
156 | 911 |
157 | 919 |
158 | 929 |
159 | 937 |
160 | 941 |
161 | 947 |
162 | 953 |
163 | 967 |
164 | 971 |
165 | 977 |
166 | 983 |
167 | 991 |
168 | 997 |
169 | 1009 |
170 | 1013 |
171 | 1019 |
172 | 1021 |
173 | 1031 |
174 | 1033 |
175 | 1039 |
176 | 1049 |
177 | 1051 |
178 | 1061 |
179 | 1063 |
180 | 1069 |
181 | 1087 |
182 | 1091 |
183 | 1093 |
184 | 1097 |
185 | 1103 |
186 | 1109 |
187 | 1117 |
188 | 1123 |
189 | 1129 |
190 | 1151 |
191 | 1153 |
192 | 1163 |
193 | 1171 |
194 | 1181 |
195 | 1187 |
196 | 1193 |
197 | 1201 |
198 | 1213 |
199 | 1217 |
200 | 1223 |
201 | 1229 |
202 | 1231 |
203 | 1237 |
204 | 1249 |
205 | 1259 |
206 | 1277 |
207 | 1279 |
208 | 1283 |
209 | 1289 |
210 | 1291 |
211 | 1297 |
212 | 1301 |
213 | 1303 |
214 | 1307 |
215 | 1319 |
216 | 1321 |
217 | 1327 |
218 | 1361 |
219 | 1367 |
220 | 1373 |
221 | 1381 |
222 | 1399 |
223 | 1409 |
224 | 1423 |
225 | 1427 |
226 | 1429 |
227 | 1433 |
228 | 1439 |
229 | 1447 |
230 | 1451 |
231 | 1453 |
232 | 1459 |
233 | 1471 |
234 | 1481 |
235 | 1483 |
236 | 1487 |
237 | 1489 |
238 | 1493 |
239 | 1499 |
240 | 1511 |
241 | 1523 |
242 | 1531 |
243 | 1543 |
244 | 1549 |
245 | 1553 |
246 | 1559 |
247 | 1567 |
248 | 1571 |
249 | 1579 |
250 | 1583 |
251 | 1597 |
252 | 1601 |
253 | 1607 |
254 | 1609 |
255 | 1613 |
256 | 1619 |
257 | 1621 |
258 | 1627 |
259 | 1637 |
260 | 1657 |
261 | 1663 |
262 | 1667 |
263 | 1669 |
264 | 1693 |
265 | 1697 |
266 | 1699 |
267 | 1709 |
268 | 1721 |
269 | 1723 |
270 | 1733 |
271 | 1741 |
272 | 1747 |
273 | 1753 |
274 | 1759 |
275 | 1777 |
276 | 1783 |
277 | 1787 |
278 | 1789 |
279 | 1801 |
280 | 1811 |
281 | 1823 |
282 | 1831 |
283 | 1847 |
284 | 1861 |
285 | 1867 |
286 | 1871 |
287 | 1873 |
288 | 1877 |
289 | 1879 |
290 | 1889 |
291 | 1901 |
292 | 1907 |
293 | 1913 |
294 | 1931 |
295 | 1933 |
296 | 1949 |
297 | 1951 |
298 | 1973 |
299 | 1979 |
300 | 1987 |
301 | 1993 |
302 | 1997 |
303 | 1999 |
304 | 2003 |
305 | 2011 |
306 | 2017 |
307 | 2027 |
308 | 2029 |
309 | 2039 |
310 | 2053 |
311 | 2063 |
312 | 2069 |
313 | 2081 |
314 | 2083 |
315 | 2087 |
316 | 2089 |
317 | 2099 |
318 | 2111 |
319 | 2113 |
320 | 2129 |
321 | 2131 |
322 | 2137 |
323 | 2141 |
324 | 2143 |
325 | 2153 |
326 | 2161 |
327 | 2179 |
328 | 2203 |
329 | 2207 |
330 | 2213 |
331 | 2221 |
332 | 2237 |
333 | 2239 |
334 | 2243 |
335 | 2251 |
336 | 2267 |
337 | 2269 |
338 | 2273 |
339 | 2281 |
340 | 2287 |
341 | 2293 |
342 | 2297 |
343 | 2309 |
344 | 2311 |
345 | 2333 |
346 | 2339 |
347 | 2341 |
348 | 2347 |
349 | 2351 |
350 | 2357 |
351 | 2371 |
352 | 2377 |
353 | 2381 |
354 | 2383 |
355 | 2389 |
356 | 2393 |
357 | 2399 |
358 | 2411 |
359 | 2417 |
360 | 2423 |
361 | 2437 |
362 | 2441 |
363 | 2447 |
364 | 2459 |
365 | 2467 |
366 | 2473 |
367 | 2477 |
368 | 2503 |
369 | 2521 |
370 | 2531 |
371 | 2539 |
372 | 2543 |
373 | 2549 |
374 | 2551 |
375 | 2557 |
376 | 2579 |
377 | 2591 |
378 | 2593 |
379 | 2609 |
380 | 2617 |
381 | 2621 |
382 | 2633 |
383 | 2647 |
384 | 2657 |
385 | 2659 |
386 | 2663 |
387 | 2671 |
388 | 2677 |
389 | 2683 |
390 | 2687 |
391 | 2689 |
392 | 2693 |
393 | 2699 |
394 | 2707 |
395 | 2711 |
396 | 2713 |
397 | 2719 |
398 | 2729 |
399 | 2731 |
400 | 2741 |
401 | 2749 |
402 | 2753 |
403 | 2767 |
404 | 2777 |
405 | 2789 |
406 | 2791 |
407 | 2797 |
408 | 2801 |
409 | 2803 |
410 | 2819 |
411 | 2833 |
412 | 2837 |
413 | 2843 |
414 | 2851 |
415 | 2857 |
416 | 2861 |
417 | 2879 |
418 | 2887 |
419 | 2897 |
420 | 2903 |
421 | 2909 |
422 | 2917 |
423 | 2927 |
424 | 2939 |
425 | 2953 |
426 | 2957 |
427 | 2963 |
428 | 2969 |
429 | 2971 |
430 | 2999 |
431 | 3001 |
432 | 3011 |
433 | 3019 |
434 | 3023 |
435 | 3037 |
436 | 3041 |
437 | 3049 |
438 | 3061 |
439 | 3067 |
440 | 3079 |
441 | 3083 |
442 | 3089 |
443 | 3109 |
444 | 3119 |
445 | 3121 |
446 | 3137 |
447 | 3163 |
448 | 3167 |
449 | 3169 |
450 | 3181 |
451 | 3187 |
452 | 3191 |
453 | 3203 |
454 | 3209 |
455 | 3217 |
456 | 3221 |
457 | 3229 |
458 | 3251 |
459 | 3253 |
460 | 3257 |
461 | 3259 |
462 | 3271 |
463 | 3299 |
464 | 3301 |
465 | 3307 |
466 | 3313 |
467 | 3319 |
468 | 3323 |
469 | 3329 |
470 | 3331 |
471 | 3343 |
472 | 3347 |
473 | 3359 |
474 | 3361 |
475 | 3371 |
476 | 3373 |
477 | 3389 |
478 | 3391 |
479 | 3407 |
480 | 3413 |
481 | 3433 |
482 | 3449 |
483 | 3457 |
484 | 3461 |
485 | 3463 |
486 | 3467 |
487 | 3469 |
488 | 3491 |
489 | 3499 |
490 | 3511 |
491 | 3517 |
492 | 3527 |
493 | 3529 |
494 | 3533 |
495 | 3539 |
496 | 3541 |
497 | 3547 |
498 | 3557 |
499 | 3559 |
500 | 3571 |
501 | 3581 |
502 | 3583 |
503 | 3593 |
504 | 3607 |
505 | 3613 |
506 | 3617 |
507 | 3623 |
508 | 3631 |
509 | 3637 |
510 | 3643 |
511 | 3659 |
512 | 3671 |
513 | 3673 |
514 | 3677 |
515 | 3691 |
516 | 3697 |
517 | 3701 |
518 | 3709 |
519 | 3719 |
520 | 3727 |
521 | 3733 |
522 | 3739 |
523 | 3761 |
524 | 3767 |
525 | 3769 |
526 | 3779 |
527 | 3793 |
528 | 3797 |
529 | 3803 |
530 | 3821 |
531 | 3823 |
532 | 3833 |
533 | 3847 |
534 | 3851 |
535 | 3853 |
536 | 3863 |
537 | 3877 |
538 | 3881 |
539 | 3889 |
540 | 3907 |
541 | 3911 |
542 | 3917 |
543 | 3919 |
544 | 3923 |
545 | 3929 |
546 | 3931 |
547 | 3943 |
548 | 3947 |
549 | 3967 |
550 | 3989 |
551 | 4001 |
552 | 4003 |
553 | 4007 |
554 | 4013 |
555 | 4019 |
556 | 4021 |
557 | 4027 |
558 | 4049 |
559 | 4051 |
560 | 4057 |
561 | 4073 |
562 | 4079 |
563 | 4091 |
564 | 4093 |
565 | 4099 |
566 | 4111 |
567 | 4127 |
568 | 4129 |
569 | 4133 |
570 | 4139 |
571 | 4153 |
572 | 4157 |
573 | 4159 |
574 | 4177 |
575 | 4201 |
576 | 4211 |
577 | 4217 |
578 | 4219 |
579 | 4229 |
580 | 4231 |
581 | 4241 |
582 | 4243 |
583 | 4253 |
584 | 4259 |
585 | 4261 |
586 | 4271 |
587 | 4273 |
588 | 4283 |
589 | 4289 |
590 | 4297 |
591 | 4327 |
592 | 4337 |
593 | 4339 |
594 | 4349 |
595 | 4357 |
596 | 4363 |
597 | 4373 |
598 | 4391 |
599 | 4397 |
600 | 4409 |
601 | 4421 |
602 | 4423 |
603 | 4441 |
604 | 4447 |
605 | 4451 |
606 | 4457 |
607 | 4463 |
608 | 4481 |
609 | 4483 |
610 | 4493 |
611 | 4507 |
612 | 4513 |
613 | 4517 |
614 | 4519 |
615 | 4523 |
616 | 4547 |
617 | 4549 |
618 | 4561 |
619 | 4567 |
620 | 4583 |
621 | 4591 |
622 | 4597 |
623 | 4603 |
624 | 4621 |
625 | 4637 |
626 | 4639 |
627 | 4643 |
628 | 4649 |
629 | 4651 |
630 | 4657 |
631 | 4663 |
632 | 4673 |
633 | 4679 |
634 | 4691 |
635 | 4703 |
636 | 4721 |
637 | 4723 |
638 | 4729 |
639 | 4733 |
640 | 4751 |
641 | 4759 |
642 | 4783 |
643 | 4787 |
644 | 4789 |
645 | 4793 |
646 | 4799 |
647 | 4801 |
648 | 4813 |
649 | 4817 |
650 | 4831 |
651 | 4861 |
652 | 4871 |
653 | 4877 |
654 | 4889 |
655 | 4903 |
656 | 4909 |
657 | 4919 |
658 | 4931 |
659 | 4933 |
660 | 4937 |
661 | 4943 |
662 | 4951 |
663 | 4957 |
664 | 4967 |
665 | 4969 |
666 | 4973 |
667 | 4987 |
668 | 4993 |
669 | 4999 |
There are 669 prime numbers between 1 to 5000 and 2 is the first prime number. Why is 1 not a prime number? 1 is not a prime number because it has only one factor, namely 1.
Characteristics of Prime Numbers:
- Uniqueness: Every positive integer greater than 1 can be expressed uniquely as a product of prime numbers, disregarding the order of factors. This principle is recognized as the Fundamental Theorem of Arithmetic.
- Infinitude of Primes: The count of prime numbers is infinite, a concept established by the ancient Greek mathematician Euclid around 300 BCE. His proof, a classic example of a contradiction-based proof, substantiates this.
- Prime Factorization: Determining the prime factorization of a number involves breaking it down into a product of prime factors. This process is integral to various mathematical operations, including simplifying fractions and identifying the greatest common divisor (GCD) of two numbers.
- Twin Primes: Twin primes denote pairs of prime numbers with a difference of 2, exemplified by pairs like (3, 5), (11, 13), and (17, 19). The unproven Twin Prime Conjecture suggests an infinite existence of such pairs.
- Prime Number Theorem: Introduced by mathematicians like Jacques Hadamard and Charles Jean de la Vallée-Poussin, the Prime Number Theorem outlines the asymptotic distribution of prime numbers. It estimates how the density of primes decreases with increasing numbers.
- Prime Numbers and Cryptography: Prime numbers play a pivotal role in modern cryptography. Public-key cryptography algorithms, such as RSA, hinge on the challenge of factoring the product of two large prime numbers, forming the basis for secure internet communication.
- Mersenne Primes: Mersenne primes are those expressed in the form 2p – 1, where p is also a prime number. These primes possess intriguing connections to perfect numbers and attract study for their mathematical properties.
- Prime Sieves: Algorithms like the Sieve of Eratosthenes efficiently identify all prime numbers up to a specified limit. This method is a well-known prime sieve and is widely used in prime number identification.
- Prime Gap: The prime gap denotes the difference between consecutive prime numbers. Despite the seeming randomness in prime distribution, open questions persist regarding the potential magnitude of prime gaps.
- Prime Number Patterns: While prime numbers themselves exhibit an apparent lack of predictable patterns (referred to as the “randomness” of primes), conjectures and patterns related to their distribution are subjects of ongoing exploration and challenge.
Prime numbers continue to be a vibrant area of study in mathematics, captivating researchers globally due to their unique properties and far-reaching implications across various fields.
Also Check